
Scalable and Secure Data Collection Using Bistro
�

W. C. Cheng
�

TeleGIF
Marina del Rey, CA 90292

bill.cheng@acm.org

C.-F. Chou
Dept. of Computer Science

and UMIACS
University of Maryland

College Park, MD 20742
chengfu@cs.umd.edu

L. Golubchik
�

Computer Science Dept.
and ISI
USC

Los Angeles, CA 90089
leana@cs.usc.edu

S. Khuller
Dept. of Computer Science

and UMIACS
University of Maryland

College Park, MD 20742
samir@cs.umd.edu

J. Y.C. Wan
Dept. of Computer Science

and UMIACS
University of Maryland

College Park, MD 20742
ycwan@cs.umd.edu

http://bourbon.usc.edu/iml/bistro

Abstract

Data collection (or uploading) is an inherent part of numerous digital government applications and is
an important problem, in general. In this paper we describe our recent research results in the development
of Bistro, a scalable and secure architecture designed for collection of data over the Internet for digital
government applications.

1 Introduction

Hotspots are a major obstacle to achieving scalability in the Internet; they are usually caused by either high
demand for some data or high demand for a certain service. At the application layer, hotspot problems have
traditionally been dealt with using some combination of increasing capacity, spreading the load over time
and/or space, and changing the workload. Some examples of these are data replication (web caching, ftp
mirroring), data replacement (multi-resolution images, video), service replication (DNS lookup, Network
Time Protocol), and server push (news or software distribution).

These classes of solutions have been studied in the context of applications using the following types of
communication: (a) one-to-many (data travels primarily from a server to multiple clients, e.g., web down-
load, software distribution, video-on-demand); (b) many-to-many (data travels between multiple clients,
through either a centralized or a distributed server, e.g., chat rooms, video conferencing); and (c) one-to-one
(data travels between two clients, e.g., e-mail, e-talk). However, to the best of our knowledge there is no
existing work, except ours on making applications using many-to-one communication scalable and efficient;

�
This work is supported in part by the NSF Digital Government Grant EIA-0091474 and the NSF CCR-0113192 grant.�
This work was done in part while the authors were with the Department of Computer Science and UMIACS, University of

Maryland at College Park.

existing solutions, such as web based uploads, simply use many independent one-to-one transfers. This cor-
responds to an important class of applications, whose examples include a large number digital government
applications.

Specifically, government at all levels is a major collector and provider of data, and there are clear benefits
to disseminating and collecting data over the Internet, given its existing large-scale infrastructure and wide-
spread reach in commercial, private, and government domains. In this project, we focus on the collection
of data over the Internet, and specifically, on the scalability and security issues which arise in the context
of Internet-based massive data collection applications. By data collection, we mean applications such as
the Internal Revenue Service (IRS) applications with respect to electronic submission of income tax forms.
Briefly other such applications are as follows. The Integrated Justice Information Technology Initiative
facilitates information sharing among state, local, and tribal justice components. An integrated (global)
information sharing system involves collection, analysis, and dissemination of criminal data. Clearly, in
order to facilitate such a system one must provide a scalable and secure infrastructure for collection of
data. Furthermore, a number of government agencies (e.g., NSF, NIH) support research activities, where the
funds are awarded through a grant proposal process, with deadlines imposed on submission dates. The entire
process involves not only submission of proposals, which can involve fairly large data sizes, but also a review
process, a reporting process (after the grant is awarded), and possibly a results dissemination process. All
these processes involve a data collection step. Lastly, digital democracy applications, such as online voting
during federal, state, or local elections, constitute another set of massive upload applications. Of course,
there are numerous other examples of digital government applications with large-scale data collection needs.

Recently we proposed Bistro [Bhattacharjee, et al., 2000, Cheng, et al., 2001a], a framework for build-
ing scalable and secure wide-area digital government upload applications. Briefly, the Bistro upload archi-
tecture works as follows. Given a large number of clients that need to upload their data by a given deadline

bistros

Bistro System
Destination bistro

(a) upload without the Bistro System (b) upload with the Bistro System

Server

Clients

...
Clients

...

...

...

Figure 1: Upload Problem.

to a given destination server (refer to Figure 1(a)), the Bistro architecture breaks the upload problem into
three steps (refer to Figure 1(b)):

� Step 1, the timestamp step, which must be accomplished prior to the deadline for clients to submit
their data to the destination server. In this step, each client sends to the server a message digest of their
data and in return receives a secure timestamp ticket from the destination server as a receipt indicating
that the client made the deadline for data submission. The purpose of this step is to ensure that the
client makes the deadline without having to transfer their data which is significantly larger than a
message digest and might take a long time to transfer during high loads which are bound to occur
around the deadline time. It is also intended to ensure that the client (or an intermediate bistro used
in Step 2 below) does not change their data after receiving the timestamp ticket (hence the sending of

the message digest to the destination server). All other steps can occur before or after the deadline.
� Step 2, the transfer of data from clients to intermediate hosts, termed bistros. This results in a low

data transfer response time for clients since (a) the load of many clients is distributed among multiple
bistros and (b) a good or near-by bistro can be selected for each client to improve data transfer perfor-
mance. Since the bistros are not trusted entities (unlike the destination server), the data is encrypted
by the client prior to the transfer.

� Step 3, the collection of data by the destination server from the bistros. The destination server de-
termines when and how the data is collected in order to avoid hotspots around the destination server
(i.e., the original problem of having many sources transfer their data to the same server around the
same time). Once the destination server collects all the data, it can decrypt it, recompute message
digests, and verify that no changes were made to a client’s data (either by the client or by one of the
intermediate bistros) after the timestamp ticket was issued.

A summary of main advantages of this architecture is as follows: (1) hotspots can be eliminated around
the server because the transfer of data is decoupled from making of the deadline, (2) clients can receive
good performance since they can be dispersed among many bistros and each one can be directed to the
“best” bistro for that client, and (3) the destination server can minimize the amount of time it takes to collect
all the data since now it is in control of when and how to do it (i.e., Bistro employs a server pull).

Our main research activities within the Bistro framework have been along the above described three
steps. This paper focuses on recent research results in each of these steps. These results are described in the
following section.

2 Overview of Results

In this section we give an overview of our current results for data collection over the Internet for digital
government applications using the Bistro framework [Cheng, et al., 2001a]. We organize these results using
the three step approach described in Section 1.

2.1 Secure Timestamp (Step 1)

Provision of a secure timestamp in Bistro involves the use of digital signatures. A digital signature is an
important type of authentication in a public-key (or asymmetric) cryptographic system, and it is in wide use
[Schneier, 1996, Stallings, 1999]. If Alice would like to send an authenticated (but not encrypted) message
M to Bob, Alice can compute a digital signature from M, concatenate M with the digital signature, and send
it to Bob. Bob, with possession of Alice’s public key, can verify the following important security properties
of the message.

� Integrity – that not a single bit in the message has been altered.

� Authentication – that the message was truly sent by Alice.

� Nonrepudiation – that Alice cannot deny that she has sent the message.

Another important property of a digital signature is that it is not vulnerable to the so-called man-in-the-
middle attack, i.e., no one (other than Alice) can change a single bit of either M or the digital signature of M
without Bob noticing that the message has been altered.

In a client/server-based application, a server, which offers a set of services, can play the role of Alice
and a client can play the role of Bob. Often, a client would like to obtain a receipt from the server, describing
the service rendered, and signifying the completion of the prescribed transaction. A digital signature can
act as such a receipt due to the nice security properties listed above. Although we focus our efforts on
digital government applications, there are many client/server-based applications where a digital signature is
desirable. For example, in a lottery ticket selling service (or a concert tickets purchasing priority numbers
issuing service), a server can timestamp and digitally sign each ticket it issues; in a pay-per-view stock tip
service, a server can generate the latest report on a stock symbol from its database and digitally sign the
report; in an income tax form collection service, a proposal collection service, a conference paper collection
service, or a bid collection service for contract bidding, a server can generate a timestamp and send the
digitally signed timestamp as proof that a client’s submission has been received and that the client has made
a deadline [Golubchik, 2002+].

A typical application is illustrated in Figure 2. In Figure 2(a), a server is shown to provide documents
to a large number of clients spread across the network, such as the Internet. (This can be generalized to
multiple services and multiple/mirrored servers). Each client

�
sends a request for a document, ��� , to the

server. The server digitally signs document ��� , to produce DS[���] and sends the document together with the
digital signature to client

�
(refer to Figures 2(b) and (c)).

C2 C3 CN

DS[Ij]

(c) reply message
sent to client j

Ij

(b) basic service

Time

Compute Digital
Signature for
Document Ij

Produce
Document Ij

ServerClient

(a) system

Clients...

Server

Network

C1

...

 Request

 Reply

Figure 2: Digital Signatures Problem.

The main problem here is that the digital signature process is very computationally expensive. There-
fore, if the particular service is very popular, under high loads, the response time for a client can be very
large. Each of the applications mentioned above corresponds to a real-life event which may experience high
demands at certain times. For example, submission of income tax forms are often done close to the deadline.

The main focus of this part of our work is to examine ways of reducing a client’s response time when
the load on the server is high. And, specifically, to reduce the computational needs of a server due to digital
signatures under high workloads. We explore the use of batching schemes and show that, using standard
cryptographic techniques, we can significantly improve the performance of a server under high load. That
is, even under high load (near 100% utilization), the server can keep up with the demands without sacri-
ficing security (while keeping computational and networking overhead at a minimal). We demonstrate the
effectiveness of these schemes by developing an analytical model, validating this model against emulation

and simulation studies, and comparing the performance of the batching schemes against a non-batched sys-
tem, using the analytical model. We also establish stability conditions for the batching schemes. From the
stability conditions, it is fairly easy to see that as the document sizes grow, the performance of the server
will be limited by hash functions calculations, and the benefit of batching will diminish. Furthermore, we
have shown that significant computational benefits can be obtained from batching schemes without signifi-
cant increases in the amount of additional information that needs to be sent to the clients. In summary, for
applications such as the ones mentioned in [Cheng, et al., 2001b] which require secure timestamps, batch
signing can relieve the CPU bottleneck at the server.

2.2 Transfer of Data from Clients to Intermediaries (Step 2)

In the Bistro framework we employ the use of intermediaries, termed bistros, for improving the efficiency
and scalability of uploads. Consequently, appropriate assignment of clients to bistros has a significant effect
on the performance of upload applications and thus constitutes an important research problem. Therefore,
in this part of our work we focus on the assignment of clients to bistros problem and on a performance
study which demonstrates the potential performance gains of the Bistro framework and gives insight into
the general upload problem.

The transfer of data from clients to intermediaries problem, for the purposes of this work, can be reduced
to (a) assignment of clients to bistros participating in a particular upload event and possibly (b) placement,
i.e., choosing which bistros should participate in a particular upload event, if such a choice is possible. Both
problems are NP-complete [Bhattacharjee, et al., 2000]. Given that the assignment problem is sufficiently
difficult, thus far, for the most part, we focused on a quantitative study of the assignment problem, and only
briefly investigated potential benefits of better placement. Our work illustrates that both have a significant
effect on the system’s performance. Thus, the main contribution of this work thus far is that it is the first
performance study of a scalable and efficient solution to the deadline-driven upload problem. Other contri-
butions of this work are as follows: (a) a quantitative performance study of this problem; (b) development
of an approximation to a lower bound on this problem (for comparison purposes); and (c) insight into the
general upload problem and characterization of potential performance gains of the Bistro framework.

2.3 Data Collection (Step 3)

Performance of the data collection step is the focus of this part of our work. Specifically, we focus on the
collection of reasonably large amounts of data, such as in the online tax submission example given above
which can easily result in approximately ��� Terabytes of data corresponding to individual tax forms alone
(business tax returns can be significantly larger). In such applications, long transfer times between one or
more of the hosts (holding this data) and the destination server can significantly prolong the amount of time it
takes to complete the data collection process. Such long transfer times can be the result of poor connectivity
between a pair of hosts, or it can be due to wide-area network congestion conditions, e.g., due to having to
transfer data over one or more (so-called) peering points whose congestion is often cited as cause of delay in
wide-area data transfers [Leighton, 2001]. Given the current state of IP routing, congestion conditions may
not necessarily result in a change of routes between a pair of hosts, even if alternate routes exist.

Thus, we consider application-level approaches to improving performance of large-scale data collection.
We do this in the context of the digital government applications and the Bistro upload framework. How-
ever, one could consider other applications where such improvements in data transfer times is an important
problem. One example is high-performance computing applications where large amounts of data need to
be transferred from one or more data repositories to one or more destinations, where computation on that

data is performed [Foster, et al., 1998]. Another example is data mining applications where large amounts
of data may need to be transferred to a particular server for analysis purposes.

Consequently, in this work we consider large-scale data collection from a set of source hosts (bistros)
to the destination host (destination bistro) which we term the data collection problem. The data collection
problem is a non-trivial one because the issue is not only to avoid congested link(s), but to devise a coor-
dinated transfer schedule which would afford maximum possible utilization of available network resources
between multiple sources and the destination.

In this work, we show that “indirect” and furthermore “coordinated” methods which re-route data
through other hosts in a coordinated fashion can result in a significant performance improvement as com-
pared to “direct” methods (which send the data directly to its final destination). Consequently, our focus in
this work is on development of algorithms for indirect coordinated transfer methods for the data collection
problem.

The contributions of this work thus far are as follows. We proposed novel algorithms for the large-scale
data collection problem, intended for an IP-type network. The main benefit of these methods is application-
level coordinated re-routing of large-scale data transfers around congestion spots or poor connectivity be-
tween a source of data and its final destination. We evaluated the performance of these algorithms and
showed that the indirect methods perform significantly better than direct methods. Specifically we showed
one to two orders of magnitude improvement under high congestion conditions (without losses in perfor-
mance under no congestion conditions). These improvements are achieved under low storage requirement
overheads and without significant detrimental effects on other network traffic.

3 Conclusions

Ideas and results described in Section 2 illustrate that significant performance improvements are possible in
collection of data over the Internet for digital government applications. We believe that much work remains
to be done in bringing these ideas to their full potential as well as in investigating their applicability to a
broader class of digital government applications.

References

[Bhattacharjee, et al., 2000] S. Bhattacharjee, W. C. Cheng, C.-F. Chou, L. Golubchik, and S. Khuller.
Bistro: a platform for building scalable wide-area upload applications. ACM SIGMETRICS
Performance Evaluation Review (also presented at the Workshop on Performance and Architec-
ture of Web Servers (PAWS) in June 2000), 28(2):29–35, September 2000.

[Cheng, et al., 2001a] W.C. Cheng, C.F. Chou, L. Golubchik, S. Khuller, and H. Samet. Scalable data
collection for internet-based digital government applications. In 1st National Conference on
Digital Government Research, pages 108–113, Los Angeles, CA, May 2001.

[Cheng, et al., 2001b] W. C. Cheng, C.-F. Chou, L. Golubchik, and S. Khuller. A secure and scalable wide-
area upload service. In Proceedings of the 2nd International Conference on Internet Computing,
Volume 2, pages 733–739, June 2001.

[Foster, et al., 1998] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, 1998.

[Golubchik, 2002+] L. Golubchik. Scalable data collection for Internet-based Digital Government applica-
tions. To appear in Advances in Digital Government: Systems, Human Factors, and Policy.

[Leighton, 2001] T. Leighton. The Challenges of Delivering Content on the Internet. Keynote address at
the ACM SIGMETRICS 2001 Conference, Cambridge, Massachusetts, June 2001.

[Schneier, 1996] B. Schneier. Applied Cryptography, Second Edition. Wiley, 1996.

[Stallings, 1999] W. Stallings. Cryptography and Network Security: Principles and Practice, 2nd Edition.
Prentice Hall, 1999.

